Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Restricted invertibility of continuous matrix functions (2201.04238v2)

Published 11 Jan 2022 in math.FA

Abstract: Motivated by an influential result of Bourgain and Tzafriri, we consider continuous matrix functions $A:\mathbb{R}\to M_{n\times n}$ and lower $\ell_2$-norm bounds associated with their restriction to certain subspaces. We prove that for any such $A$ with unit-length columns, there exists a continuous choice of subspaces $t\mapsto U(t)\subset \mathbb{R}n$ such that for $v\in U(t)$, $|A(t)v|\geq c|v|$ where $c$ is some universal constant. Furthermore, the $U(t)$ are chosen so that their dimension satisfies a lower bound with optimal asymptotic dependence on $n$ and $\sup_{t\in \mathbb{R}}|A(t)|.$ We provide two methods. The first relies on an orthogonality argument, while the second is probabilistic and combinatorial in nature. The latter does not yield the optimal bound for $\dim(U(t))$ but the $U(t)$ obtained in this way are guaranteed to have a canonical representation as joined-together spaces spanned by subsets of the unit vector basis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube