Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Communication Efficient Quasi-Newton Method for Large-scale Distributed Multi-agent Optimization (2201.03759v3)

Published 11 Jan 2022 in math.OC

Abstract: We propose a communication efficient quasi-Newton method for large-scale multi-agent convex composite optimization. We assume the setting of a network of agents that cooperatively solve a global minimization problem with strongly convex local cost functions augmented with a non-smooth convex regularizer. By introducing consensus variables, we obtain a block-diagonal Hessian and thus eliminate the need for additional communication when approximating the objective curvature information. Moreover, we reduce computational costs of existing primal-dual quasi-Newton methods from $\mathcal{O}(d3)$ to $\mathcal{O}(cd)$ by storing $c$ pairs of vectors of dimension $d$. An asynchronous implementation is presented that removes the need for coordination. Global linear convergence rate in expectation is established, and we demonstrate the merit of our algorithm numerically with real datasets.

Summary

We haven't generated a summary for this paper yet.