Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BFGS-ADMM for Large-Scale Distributed Optimization (2109.14804v1)

Published 30 Sep 2021 in math.OC

Abstract: We consider a class of distributed optimization problem where the objective function consists of a sum of strongly convex and smooth functions and a (possibly nonsmooth) convex regularizer. A multi-agent network is assumed, where each agent holds a private cost function and cooperates with its neighbors to compute the optimum of the aggregate objective. We propose a quasi-Newton Alternating Direction Method of Multipliers (ADMM) where the primal update is solved inexactly with approximated curvature information. By introducing an intermediate consensus variable, we achieve a block diagonal Hessian which eliminates the need for inner communication loops within the network when computing the update direction. We establish global linear convergence to the optimal primal-dual solution without the need for backtracking line search, under the assumption that component cost functions are strongly convex with Lipschitz continuous gradients. Numerical simulations on real datasets demonstrate the advantages of the proposed method over state of the art.

Summary

We haven't generated a summary for this paper yet.