Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The isoperimetric problem via direct method in noncompact metric measure spaces with lower Ricci bounds (2201.03525v1)

Published 10 Jan 2022 in math.DG and math.MG

Abstract: We establish a structure theorem for minimizing sequences for the isoperimetric problem on noncompact $\mathsf{RCD}(K,N)$ spaces $(X,\mathsf{d},\mathcal{H}N)$. Under the sole (necessary) assumption that the measure of unit balls is uniformly bounded away from zero, we prove that the limit of such a sequence is identified by a finite collection of isoperimetric regions possibly contained in pointed Gromov--Hausdorff limits of the ambient space $X$ along diverging sequences of points. The number of such regions is bounded linearly in terms of the measure of the minimizing sequence. The result follows from a new generalized compactness theorem, which identifies the limit of a sequence of sets $E_i\subset X_i$ with uniformly bounded measure and perimeter, where $(X_i,\mathsf{d}_i,\mathcal{H}N)$ is an arbitrary sequence of $\mathsf{RCD}(K,N)$ spaces. An abstract criterion for a minimizing sequence to converge without losing mass at infinity to an isoperimetric set is also discussed. The latter criterion is new also for smooth Riemannian spaces.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube