Uniqueness of extremals for some sharp Poincaré-Sobolev constants (2201.03394v3)
Abstract: We study the sharp constant for the embedding of $W{1,p}_0(\Omega)$ into $Lq(\Omega)$, in the case $2<p<q$. We prove that for smooth connected sets, when $q>p$ and $q$ is sufficiently close to $p$, extremal functions attaining the sharp constant are unique, up to a multiplicative constant. This in turn gives the uniqueness of solutions with minimal energy to the Lane-Emden equation, with super-homogeneous right-hand side. The result is achieved by suitably adapting a linearization argument due to C.-S. Lin. We rely on some fine estimates for solutions of $p-$Laplace--type equations by L. Damascelli and B. Sciunzi.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.