Papers
Topics
Authors
Recent
2000 character limit reached

A Unified Granular-ball Learning Model of Pawlak Rough Set and Neighborhood Rough Set (2201.03349v4)

Published 10 Jan 2022 in cs.AI and cs.LG

Abstract: Pawlak rough set and neighborhood rough set are the two most common rough set theoretical models. Pawlak can use equivalence classes to represent knowledge, but it cannot process continuous data; neighborhood rough sets can process continuous data, but it loses the ability of using equivalence classes to represent knowledge. To this end, this paper presents a granular-ball rough set based on the granular-ball computing. The granular-ball rough set can simultaneously represent Pawlak rough sets, and the neighborhood rough set, so as to realize the unified representation of the two. This makes the granular-ball rough set not only can deal with continuous data, but also can use equivalence classes for knowledge representation. In addition, we propose an implementation algorithms of granular-ball rough sets. The experimental results on benchmark datasets demonstrate that, due to the combination of the robustness and adaptability of the granular-ball computing, the learning accuracy of the granular-ball rough set has been greatly improved compared with the Pawlak rough set and the traditional neighborhood rough set. The granular-ball rough set also outperforms nine popular or the state-of-the-art feature selection methods.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.