Categorical Hopfield Networks (2201.02756v2)
Abstract: This paper discusses a simple and explicit toy-model example of the categorical Hopfield equations introduced in previous work of Manin and the author. These describe dynamical assignments of resources to networks, where resources are objects in unital symmetric monoidal categories and assignments are realized by summing functors. The special case discussed here is based on computational resources (computational models of neurons) as objects in a category of DNNs, with a simple choice of the endofunctors defining the Hopfield equations that reproduce the usual updating of the weights in DNNs by gradient descent.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.