Papers
Topics
Authors
Recent
2000 character limit reached

Fano manifolds with Lefschetz defect 3

Published 7 Jan 2022 in math.AG | (2201.02413v2)

Abstract: Let X be a smooth, complex Fano variety, and delta(X) its Lefschetz defect. It is known that if delta(X) is at least 4, then X is isomorphic to a product SxT, where dim T=dim X-2. In this paper we prove a structure theorem for the case where delta(X)=3. We show that there exists a smooth Fano variety T with dim T=dim X-2 such that X is obtained from T with two possible explicit constructions; in both cases there is a P2-bundle Z over T such that X is the blow-up of Z along three pairwise disjoint smooth, irreducible, codimension 2 subvarieties. Then we apply the structure theorem to Fano 4-folds, to the case where X has Picard number 5, and to Fano varieties having an elementary divisorial contraction sending a divisor to a curve. In particular we complete the classification of Fano 4-folds with delta(X)=3.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.