Papers
Topics
Authors
Recent
Search
2000 character limit reached

Realistic Full-Body Anonymization with Surface-Guided GANs

Published 6 Jan 2022 in cs.CV | (2201.02193v2)

Abstract: Recent work on image anonymization has shown that generative adversarial networks (GANs) can generate near-photorealistic faces to anonymize individuals. However, scaling up these networks to the entire human body has remained a challenging and yet unsolved task. We propose a new anonymization method that generates realistic humans for in-the-wild images. A key part of our design is to guide adversarial nets by dense pixel-to-surface correspondences between an image and a canonical 3D surface. We introduce Variational Surface-Adaptive Modulation (V-SAM) that embeds surface information throughout the generator. Combining this with our novel discriminator surface supervision loss, the generator can synthesize high quality humans with diverse appearances in complex and varying scenes. We demonstrate that surface guidance significantly improves image quality and diversity of samples, yielding a highly practical generator. Finally, we show that our method preserves data usability without infringing privacy when collecting image datasets for training computer vision models. Source code and appendix is available at: \href{https://github.com/hukkelas/full_body_anonymization}{github.com/hukkelas/full\_body\_anonymization}

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.