Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lumbar Bone Mineral Density Estimation from Chest X-ray Images: Anatomy-aware Attentive Multi-ROI Modeling (2201.01838v2)

Published 5 Jan 2022 in eess.IV and cs.CV

Abstract: Osteoporosis is a common chronic metabolic bone disease often under-diagnosed and under-treated due to the limited access to bone mineral density (BMD) examinations, e.g. via Dual-energy X-ray Absorptiometry (DXA). This paper proposes a method to predict BMD from Chest X-ray (CXR), one of the most commonly accessible and low-cost medical imaging examinations. Our method first automatically detects Regions of Interest (ROIs) of local CXR bone structures. Then a multi-ROI deep model with transformer encoder is developed to exploit both local and global information in the chest X-ray image for accurate BMD estimation. Our method is evaluated on 13719 CXR patient cases with ground truth BMD measured by the gold standard DXA. The model predicted BMD has a strong correlation with the ground truth (Pearson correlation coefficient 0.894 on lumbar 1). When applied in osteoporosis screening, it achieves a high classification performance (average AUC of 0.968). As the first effort of using CXR scans to predict the BMD, the proposed algorithm holds strong potential for early osteoporosis screening and public health promotion.

Citations (6)

Summary

We haven't generated a summary for this paper yet.