Deterministic metric $1$-median selection with very few queries (2201.01436v1)
Abstract: Given an $n$-point metric space $(M,d)$, {\sc metric $1$-median} asks for a point $p\in M$ minimizing $\sum_{x\in M}\,d(p,x)$. We show that for each computable function $f\colon \mathbb{Z}+\to\mathbb{Z}+$ satisfying $f(n)=\omega(1)$, {\sc metric $1$-median} has a deterministic, $o(n)$-query, $o(f(n)\cdot\log n)$-approximation and nonadaptive algorithm. Previously, no deterministic $o(n)$-query $o(n)$-approximation algorithms are known for {\sc metric $1$-median}. On the negative side, we prove each deterministic $O(n)$-query algorithm for {\sc metric $1$-median} to be not $(\delta\log n)$-approximate for a sufficiently small constant $\delta>0$. We also refute the existence of deterministic $o(n)$-query $O(\log n)$-approximation algorithms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.