Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Training Quantized Deep Neural Networks via Cooperative Coevolution (2112.14834v3)

Published 23 Dec 2021 in cs.NE, cs.AI, and cs.LG

Abstract: This work considers a challenging Deep Neural Network(DNN) quantization task that seeks to train quantized DNNs without involving any full-precision operations. Most previous quantization approaches are not applicable to this task since they rely on full-precision gradients to update network weights. To fill this gap, in this work we advocate using Evolutionary Algorithms (EAs) to search for the optimal low-bits weights of DNNs. To efficiently solve the induced large-scale discrete problem, we propose a novel EA based on cooperative coevolution that repeatedly groups the network weights based on the confidence in their values and focuses on optimizing the ones with the least confidence. To the best of our knowledge, this is the first work that applies EAs to train quantized DNNs. Experiments show that our approach surpasses previous quantization approaches and can train a 4-bit ResNet-20 on the Cifar-10 dataset with the same test accuracy as its full-precision counterpart.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.