Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Efficient Automatic Differentiation of Implicit Functions (2112.14217v2)

Published 28 Dec 2021 in stat.CO

Abstract: Derivative-based algorithms are ubiquitous in statistics, machine learning, and applied mathematics. Automatic differentiation offers an algorithmic way to efficiently evaluate these derivatives from computer programs that execute relevant functions. Implementing automatic differentiation for programs that incorporate implicit functions, such as the solution to an algebraic or differential equation, however, requires particular care. Contemporary applications typically appeal to either the application of the implicit function theorem or, in certain circumstances, specialized adjoint methods. In this paper we show that both of these approaches can be generalized to any implicit function, although the generalized adjoint method is typically more effective for automatic differentiation. To showcase the relative advantages and limitations of the two methods we demonstrate their application on a suite of common implicit functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.