Papers
Topics
Authors
Recent
2000 character limit reached

A full circuit-based quantum algorithm for excited-states in quantum chemistry

Published 28 Dec 2021 in quant-ph | (2112.14193v3)

Abstract: Utilizing quantum computer to investigate quantum chemistry is an important research field nowadays. In addition to the ground-state problems that have been widely studied, the determination of excited-states plays a crucial role in the prediction and modeling of chemical reactions and other physical processes. Here, we propose a non-variational full circuit-based quantum algorithm for obtaining the excited-state spectrum of a quantum chemistry Hamiltonian. Compared with previous classical-quantum hybrid variational algorithms, our method eliminates the classical optimization process, reduces the resource cost caused by the interaction between different systems, and achieves faster convergence rate and stronger robustness against noise without barren plateau. The parameter updating for determining the next energy-level is naturally dependent on the energy measurement outputs of the previous energy-level and can be realized by only modifying the state preparation process of ancillary system, introducing little additional resource overhead. Numerical simulations of the algorithm with hydrogen, LiH, H2O and NH3 molecules are presented. Furthermore, we offer an experimental demonstration of the algorithm on a superconducting quantum computing platform, and the results show a good agreement with theoretical expectations. The algorithm can be widely applied to various Hamiltonian spectrum determination problems on the fault-tolerant quantum computers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Paul Benioff. The computer as a physical system: A microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. Journal of statistical physics, 22(5):563–591, 1980. doi: 10.1007/BF01011339.
  2. Richard P Feynman. Simulating physics with computers. Int J Theor Phys, 21(1):467–488, 1982. doi: 10.1007/BF02650179.
  3. Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999. doi: 10.1137/S0036144598347011.
  4. Lov K Grover. Quantum mechanics helps in searching for a needle in a haystack. Physical review letters, 79(2):325, 1997. doi: 10.1103/PhysRevLett.79.325.
  5. Phase matching in quantum searching. Physics Letters A, 262(1):27–34, 1999. doi: 10.1016/S0375-9601(99)00631-3.
  6. Quantum algorithm for linear systems of equations. Physical review letters, 103(15):150502, 2009. doi: 10.1103/PhysRevLett.103.150502.
  7. Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing. Physical review letters, 122(6):060504, 2019. doi: 10.1103/PhysRevLett.122.060504.
  8. Quantum chemistry in the age of quantum computing. Chemical reviews, 119(19):10856–10915, 2019. doi: 10.1021/acs.chemrev.8b00803.
  9. Quantum computational chemistry. Reviews of Modern Physics, 92(1):015003, 2020. doi: 10.1103/RevModPhys.92.015003.
  10. Quantum algorithms for quantum chemistry and quantum materials science. Chemical Reviews, 120(22):12685–12717, 2020. doi: 10.1021/acs.chemrev.9b00829.
  11. A variational eigenvalue solver on a photonic quantum processor. Nature communications, 5(1):1–7, 2014. doi: 10.1038/ncomms5213.
  12. Scalable quantum simulation of molecular energies. Physical Review X, 6(3):031007, 2016. doi: 10.1103/PhysRevX.6.031007.
  13. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549(7671):242–246, 2017. doi: 10.1038/nature23879.
  14. Variational quantum algorithms. Nature Reviews Physics, pages 1–20, 2021. doi: 10.1038/s42254-021-00348-9.
  15. Low-cost error mitigation by symmetry verification. Physical Review A, 98(6):062339, 2018. doi: 10.1103/PhysRevA.98.062339.
  16. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nature communications, 10(1):1–9, 2019. doi: 10.1038/s41467-019-10988-2.
  17. qubit-adapt-vqe: An adaptive algorithm for constructing hardware-efficient ansätze on a quantum processor. PRX Quantum, 2(2):020310, 2021. doi: 10.1103/PRXQuantum.2.020310.
  18. Structure optimization for parameterized quantum circuits. Quantum, 5:391, 2021. doi: 10.22331/q-2021-01-28-391.
  19. A full quantum eigensolver for quantum chemistry simulations. Research, 2020, 2020. doi: 10.34133/2020/1486935.
  20. Quantum gradient descent and newton’s method for constrained polynomial optimization. New Journal of Physics, 21(7):073023, 2019. doi: 10.1088/1367-2630/ab2a9e.
  21. Variational quantum computation of excited states. Quantum, 3:156, 2019. doi: 10.22331/q-2019-07-01-156.
  22. Variational quantum algorithms for discovering hamiltonian spectra. Physical Review A, 99(6):062304, 2019. doi: 10.1103/PhysRevA.99.062304.
  23. Subspace-search variational quantum eigensolver for excited states. Physical Review Research, 1(3):033062, 2019. doi: 10.1103/PhysRevResearch.1.033062.
  24. Quantum computation of electronic transitions using a variational quantum eigensolver. Physical review letters, 122(23):230401, 2019. doi: 10.1103/PhysRevLett.122.230401.
  25. Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states. Physical Review A, 95(4):042308, 2017. doi: 10.1103/PhysRevA.95.042308.
  26. Computation of molecular spectra on a quantum processor with an error-resilient algorithm. Physical Review X, 8(1):011021, 2018. doi: 10.1103/PhysRevX.8.011021.
  27. A method of determining excited-states for quantum computation. arXiv preprint arXiv:1908.05238, 2019. doi: 10.48550/arXiv.1908.05238.
  28. Quantum equation of motion for computing molecular excitation energies on a noisy quantum processor. Physical Review Research, 2(4):043140, 2020. doi: 10.1103/PhysRevResearch.2.043140.
  29. Variational quantum eigensolvers by variance minimization. Chinese Physics B, 31(12):120301, 2022. doi: 10.1088/1674-1056/ac8a8d.
  30. Analytical nonadiabatic couplings and gradients within the state-averaged orbital-optimized variational quantum eigensolver. Journal of chemical theory and computation, 18(2):776–794, 2022. doi: 10.1021/acs.jctc.1c00995.
  31. Variational quantum packaged deflation for arbitrary excited states. Quantum Engineering, page e80, 2021. doi: 10.1002/que2.80.
  32. über das paulische äquivalenzverbot. In The Collected Works of Eugene Paul Wigner, pages 109–129. Springer, 1993. doi: 10.1007/978-3-662-02781-3_9.
  33. Fermionic quantum computation. Annals of Physics, 298(1):210–226, 2002. doi: 10.1006/aphy.2002.6254.
  34. Long Gui-Lu. General quantum interference principle and duality computer. Communications in Theoretical Physics, 45(5):825, 2006. doi: 10.1088/0253-6102/45/5/013.
  35. Duality computing in quantum computers. Communications in Theoretical Physics, 50(6):1303, 2008. doi: 10.1088/0253-6102/50/6/11.
  36. Allowable generalized quantum gates. Communications in Theoretical Physics, 51(1):65, 2009. doi: 10.1088/0253-6102/51/1/13.
  37. Hamiltonian simulation using linear combinations of unitary operations. arXiv preprint arXiv:1202.5822, 2012. doi: 10.48550/arXiv.1202.5822.
  38. Experimental demonstration of a digital quantum simulation of a general 𝒫⁢𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric system. Physical Review A, 99(6):062122, 2019. doi: 10.1103/PhysRevA.99.062122.
  39. Observation of information flow in the anti-𝒫⁢𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-symmetric system with nuclear spins. npj Quantum Information, 6(1):1–7, 2020. doi: 10.1038/s41534-020-0258-4.
  40. Efficient scheme for initializing a quantum register with an arbitrary superposed state. Physical Review A, 64(1):014303, 2001. doi: 10.1103/PhysRevA.64.014303.
  41. Quantum random access memory. Physical review letters, 100(16):160501, 2008. doi: 10.1103/PhysRevLett.100.160501.
  42. Quantum amplitude amplification and estimation. Contemporary Mathematics, 305:53–74, 2002. doi: 10.1090/conm/305/05215.
  43. Simulating hamiltonian dynamics with a truncated taylor series. Physical review letters, 114(9):090502, 2015. doi: 10.1103/PhysRevLett.114.090502.
  44. Quantum simulation of quantum channels in nuclear magnetic resonance. Physical Review A, 96(6):062303, 2017. doi: 10.1103/PhysRevA.96.062303.
  45. Efficient universal quantum channel simulation in ibm’s cloud quantum computer. Science China Physics, Mechanics & Astronomy, 61(7):1–10, 2018. doi: 10.1007/s11433-017-9181-9.
  46. Interaction-based quantum metrology showing scaling beyond the heisenberg limit. Nature, 471(7339):486–489, 2011. doi: 10.1038/nature09778.
  47. Nmr implementation of a molecular hydrogen quantum simulation with adiabatic state preparation. Physical review letters, 104(3):030502, 2010. doi: 10.1103/PhysRevLett.104.030502.
  48. Maysum Panju. Iterative methods for computing eigenvalues and eigenvectors. arXiv preprint arXiv:1105.1185, 2011. doi: 10.48550/arXiv.1105.1185.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.