Papers
Topics
Authors
Recent
2000 character limit reached

The Probabilistic Zeta Function of a Finite Lattice (2112.13766v6)

Published 27 Dec 2021 in math.CO and math.NT

Abstract: We study Brown's definition of the probabilistic zeta function of a finite lattice as a generalization of that of a finite group. We propose a natural alternative or extension that may be better suited for non-atomistic lattices. The probabilistic zeta function admits a general Dirichlet series expression, which unlike for groups, need not be ordinary. We compute the function for several examples of finite lattices, establishing a connection with the Stirling numbers of the second kind in the case of the divisibility lattice. Furthermore, in the context of moving from groups to lattices, we are interested in lattices with probabilistic zeta function given by ordinary Dirichlet series. In this regard, we focus on partition lattices and $d$-divisible partition lattices. Using the prime number theorem, we show that the probabilistic zeta functions of the latter typically fail to be ordinary Dirichlet series.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.