Linear Principal Minor Polynomials: Hyperbolic Determinantal Inequalities and Spectral Containment (2112.13321v1)
Abstract: A linear principal minor polynomial or lpm polynomial is a linear combination of principal minors of a symmetric matrix. By restricting to the diagonal, lpm polynomials are in bijection to multiaffine polynomials. We show that this establishes a one-to-one correspondence between homogeneous multiaffine stable polynomials and PSD-stable lpm polynomials. This yields new construction techniques for hyperbolic polynomials and allows us to generalize the well-known Fisher--Hadamard and Koteljanskii inequalities from determinants to PSD-stable lpm polynomials. We investigate the relationship between the associated hyperbolicity cones and conjecture a relationship between the eigenvalues of a symmetric matrix and the values of certain lpm polynomials evaluated at that matrix. We refer to this relationship as spectral containment.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.