Papers
Topics
Authors
Recent
Search
2000 character limit reached

A phase-field approach to model evaporation from porous media: Modeling and upscaling

Published 24 Dec 2021 in math.AP, math-ph, and math.MP | (2112.13104v2)

Abstract: We develop a phase-field model for evaporation from a porous medium by explicitly considering a vapor component together with the liquid and gas phases in the system. The phase-field model consists of the conservation of mass (for phases and vapor component), momentum, and energy. In addition, the evolution of the phase field is described by the Allen-Cahn equation. In the limit of vanishing interface width, matched asymptotic expansions reveal that the phase-field model reduces to the sharp-interface model with all the relevant transmission conditions on the moving interface. An energy estimate is derived, which suggests that for the diffusion-dominated regime, energy always decreases with time. However, this is not trivial in the case of other regimes. Through numerical examples, we analyze the efficiency of the developed phase-field formulation in modeling the evaporation process. We observe that our formulation is able to capture shrinking liquid droplet, in other words evaporation. Further, the phase-field model is upscaled to the Darcy scale using periodic homogenization for the diffusion-dominated regime. The effective parameters at the Darcy scale are connected to the pore scale through corresponding cell problems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.