Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Monitoring Deforestation Using Multivariate Bayesian Online Changepoint Detection with Outliers (2112.12899v2)

Published 24 Dec 2021 in stat.ME

Abstract: Near real time change detection is important for a variety of Earth monitoring applications and remains a high priority for remote sensing science. Data sparsity, subtle changes, seasonal trends, and the presence of outliers make detecting actual landscape changes challenging. Adams and MacKay (2007) introduced Bayesian Online Changepoint Detection (BOCPD), a computationally efficient, exact Bayesian method for change detection. Incorporation of prior information allows for relaxed dependence on dense data and an extensive stable period, making this method applicable to relatively short time series and multiple changepoint detection. In this paper we conduct BOCPD with a multivariate linear regression framework that supports seasonal trends. We introduce a mechanism to make BOCPD robust against occasional outliers without compromising the computational efficiency of an exact posterior change distribution nor the detection latency. We show via simulations that the method effectively detects change in the presence of outliers. The method is then applied to monitor deforestation in Myanmar where we show superior performance compared to current online changepoint detection methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube