Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

BLAST: Bayesian online change-point detection with structured image data (2504.09783v1)

Published 14 Apr 2025 in stat.ME and stat.CO

Abstract: The prompt online detection of abrupt changes in image data is essential for timely decision-making in broad applications, from video surveillance to manufacturing quality control. Existing methods, however, face three key challenges. First, the high-dimensional nature of image data introduces computational bottlenecks for efficient real-time monitoring. Second, changes often involve structural image features, e.g., edges, blurs and/or shapes, and ignoring such structure can lead to delayed change detection. Third, existing methods are largely non-Bayesian and thus do not provide a quantification of monitoring uncertainty for confident detection. We address this via a novel Bayesian onLine Structure-Aware change deTection (BLAST) method. BLAST first leverages a deep Gaussian Markov random field prior to elicit desirable image structure from offline reference data. With this prior elicited, BLAST employs a new Bayesian online change-point procedure for image monitoring via its so-called posterior run length distribution. This posterior run length distribution can be computed in an online fashion using $\mathcal{O}(p2)$ work at each time-step, where $p$ is the number of image pixels; this facilitates scalable Bayesian online monitoring of large images. We demonstrate the effectiveness of BLAST over existing methods in a suite of numerical experiments and in two applications, the first on street scene monitoring and the second on real-time process monitoring for metal additive manufacturing.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)