Quantum autoencoders for communication-efficient quantum cloud computing (2112.12369v1)
Abstract: In the model of quantum cloud computing, the server executes a computation on the quantum data provided by the client. In this scenario, it is important to reduce the amount of quantum communication between the client and the server. A possible approach is to transform the desired computation into a compressed version that acts on a smaller number of qubits, thereby reducing the amount of data exchanged between the client and the server. Here we propose quantum autoencoders for quantum gates (QAEGate) as a method for compressing quantum computations. We illustrate it in concrete scenarios of single-round and multi-round communication and validate it through numerical experiments. A bonus of our method is it does not reveal any information about the server's computation other than the information present in the output.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.