Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 128 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Graph attentive feature aggregation for text-independent speaker verification (2112.12343v1)

Published 23 Dec 2021 in cs.SD and eess.AS

Abstract: The objective of this paper is to combine multiple frame-level features into a single utterance-level representation considering pairwise relationship. For this purpose, we propose a novel graph attentive feature aggregation module by interpreting each frame-level feature as a node of a graph. The inter-relationship between all possible pairs of features, typically exploited indirectly, can be directly modeled using a graph. The module comprises a graph attention layer and a graph pooling layer followed by a readout operation. The graph attention layer first models the non-Euclidean data manifold between different nodes. Then, the graph pooling layer discards less informative nodes considering the significance of the nodes. Finally, the readout operation combines the remaining nodes into a single representation. We employ two recent systems, SE-ResNet and RawNet2, with different input features and architectures and demonstrate that the proposed feature aggregation module consistently shows a relative improvement over 10%, compared to the baseline.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.