Papers
Topics
Authors
Recent
Search
2000 character limit reached

Point spread function estimation for blind image deblurring problems based on framelet transform

Published 21 Dec 2021 in cs.CV, cs.IT, eess.IV, math.IT, and math.OC | (2112.11004v1)

Abstract: One of the most important issues in the image processing is the approximation of the image that has been lost due to the blurring process. These types of matters are divided into non-blind and blind problems. The second type of problem is more complex in terms of calculations than the first problems due to the unknown of original image and point spread function estimation. In the present paper, an algorithm based on coarse-to-fine iterative by $l_0-\alpha l_1$ regularization and framelet transform is introduced to approximate the spread function estimation. Framelet transfer improves the restored kernel due to the decomposition of the kernel to different frequencies. Also in the proposed model fraction gradient operator is used instead of ordinary gradient operator. The proposed method is investigated on different kinds of images such as text, face, natural. The output of the proposed method reflects the effectiveness of the proposed algorithm in restoring the images from blind problems.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.