Papers
Topics
Authors
Recent
2000 character limit reached

Nonabelian Hodge theory for stacks and a stacky P=W conjecture (2112.10830v5)

Published 20 Dec 2021 in math.AG, hep-th, and math.RT

Abstract: We introduce a version of the P=W conjecture relating the Borel-Moore homology of the stack of representations of the fundamental group of a genus g Riemann surface with the Borel-Moore homology of the stack of degree zero semistable Higgs bundles on a smooth projective complex curve of genus $g$. In order to state the conjecture we propose a construction of a canonical isomorphism between these Borel-Moore homology groups. We relate the stacky P=W conjecture with the original P=W conjecture concerning the cohomology of smooth moduli spaces of twisted objects, and the PI=WI conjecture concerning the intersection cohomology groups of singular moduli spaces of untwisted objects. In genus zero and one, we prove the conjectures that we introduce in this paper.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. A Luna étale slice theorem for algebraic stacks. Ann. Math., 191(3):675–738, 2020.
  2. V. Baranovsky. The variety of pairs of commuting nilpotent matrices is irreducible. Transform. groups, 6(1):3–8, 2001.
  3. A “Darboux theorem” for shifted symplectic structures on derived Artin stacks, with applications. Geom. & Top., 19(3):1287–1359, 2015.
  4. Faisceaux pervers. Astérisque, 100, 1983.
  5. T. Bridgeland. Equivalences of triangulated categories and Fourier–Mukai transforms. Bull. London Math. Soc., 31(1):25–34, 1999.
  6. T. Bozec and O. Schiffmann. Counting absolutely cuspidals for quivers. Mathematische Zeitschrift, 292(1-2):133–149, 2019.
  7. W. Crawley-Boevey. Geometry of the moment map for representations of quivers. Compos. Math., 126(3):257–293, 2001.
  8. K. Corlette. Flat G𝐺Gitalic_G-bundles with canonical metrics. J. Differ. Geom., 28(3):361–382, 1988.
  9. B. Davison. Cohomological Hall algebras and character varieties. Int. J. Math., 27(07).
  10. B. Davison. The critical CoHA of a quiver with potential. Quart. J. Math., 68(2):635–703, 2017.
  11. B. Davison. The integrality conjecture and the cohomology of preprojective stacks. https://arxiv.org/abs/1602.02110v3, 2017.
  12. B. Davison. Purity of critical cohomology and Kac’s conjecture. Math. Res. Lett., 25(2):469–488, 2018.
  13. B. Davison. BPS Lie algebras and the less perverse filtration on the preprojective CoHA. https://arxiv.org/abs/2007.03289, 2020.
  14. B. Davison. Purity and 2-Calabi–Yau categories. https://arxiv.org/abs/2106.07692, 2021.
  15. B. Davison. Affine BPS algebras, W algebras, and the cohomological Hall algebra of 𝔸2superscript𝔸2\mathbb{A}^{2}blackboard_A start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. arXiv preprint arXiv:2209.05971, 2022.
  16. Topology of Hitchin systems and Hodge theory of character varieties: the case A1subscript𝐴1A_{1}italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Ann. Math., 175(3):1329–1407, 2012.
  17. Mark Andrea A de Cataldo and Davesh Maulik. The perverse filtration for the Hitchin fibration is locally constant. Pure Appl. Math. Q., 16(5):1444–1464, 2020.
  18. P. Deligne. Théorie de Hodge: II. Publ. Math. IHÉS, 40:5–57, 1971.
  19. P. Deligne. Théorie de Hodge: III. Publ. Math. IHÉS, 44:5–77, 1974.
  20. Moduli spaces, indecomposable objects and potentials over a finite field. http://arxiv.org/abs/1612.01733, 2016.
  21. BPS Lie algebras for totally negative 2-Calabi-Yau categories and nonabelian Hodge theory for stacks. https://arxiv.org/abs/2212.07668, 2022.
  22. BPS Lie algebras for totally negative 2-Calabi-Yau categories and nonabelian Hodge theory for stacks. arXiv preprint arXiv:2212.07668, 2022.
  23. B. Davison and S. Meinhardt. Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras. Invent. Math., 221:777–871, 2020.
  24. S. Donaldson. Twisted harmonic maps and self-duality equations. Proc. London Math. Soc., 55:127–131, 1987.
  25. C. Felisetti. Intersection cohomology of the moduli space of Higgs bundles on a genus 2 curve. J. Inst. Math. Jussieu, page 1–50, 2021.
  26. C. Felisetti and M. Mauri. P=W conjectures for character varieties with symplectic resolution. https://arxiv.org/abs/2006.08752.
  27. T. Hausel. Kac’s conjecture from Nakajima quiver varieties. Invent. Math., 181(1):21–37, 2010.
  28. N. Hitchin. The self-duality equations on a Riemann surface. Proc. London Math. Soc., 3(1):59–126, 1987.
  29. Positivity for Kac polynomials and DT-invariants of quivers. Ann. Math., 177:1147–1168, 2013.
  30. P=W𝑃𝑊P=Witalic_P = italic_W via H2subscript𝐻2H_{2}italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. https://arxiv.org/abs/2209.05429, 2022.
  31. T. Hausel and F. Rodriguez-Villegas. Mixed Hodge polynomials of character varieties. Invent. Math., 174:555–624, 2008.
  32. V. Kac. Root systems, representations of quivers and invariant theory. In Invariant theory, pages 74–108. Springer, 1983.
  33. B. Keller. Calabi–Yau triangulated categories. in Trends in representation theory of algebras and related topics (editor A. Skowronski), pages 467–489, 2008.
  34. T. Kinjo and N. Koseki. Cohomological χχ\upchiroman_χ-independence for Higgs bundles and Gopakumar–Vafa invariants. https://arxiv.org/abs/2112.10053, 2021.
  35. T. Kinjo and N. Masuda. Global critical chart for local Calabi–Yau threefold. https://arxiv.org/abs/2112.10052, 2021.
  36. M. Kashiwara and P. Schapira. Sheaves on manifolds, volume 292 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1990.
  37. M. Kontsevich and Y. Soibelman. Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants. Commun. Number Theory Phys., 5, 2011. arXiv:1006.2706.
  38. M. Kapranov and E. Vasserot. The cohomological Hall algebra of a surface and factorization cohomology. https://arxiv.org/abs/1901.07641, 2019.
  39. M. Mauri. Intersection cohomology of rank two character varieties of surface groups. https://arxiv.org/abs/2101.04628, 2021.
  40. A. Minets. Cohomological Hall algebras for Higgs torsion sheaves, moduli of triples and sheaves on surfaces. Sel. Math. New Set., 26:1–67, 2020.
  41. S. Meinhardt and M. Reineke. Donaldson–Thomas invariants versus intersection cohomology of quiver moduli. J. für die Reine und Angew. Math. (Crelles Journal), 2019(754):143–178, 2019.
  42. D. Maulik and J. Shen. Cohomological χχ\upchiroman_χ-independence for moduli of one-dimensional sheaves and moduli of Higgs bundles. arXiv preprint arXiv:2012.06627, to appear Geom.& Top., 2020.
  43. D. Maulik and J. Shen. The P=W𝑃𝑊P=Witalic_P = italic_W conjecture for GLnsubscriptGL𝑛\mathrm{GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. https://arxiv.org/abs/2209.02568, 2022.
  44. Perverse filtrations and Fourier transforms. arXiv preprint arXiv:2308.13160, 2023.
  45. D. Maulik and Y. Toda. Gopakumar–Vafa invariants via vanishing cycles. Invent. Math., 213(3):1017–1097, 2018.
  46. A. Polishchuk. Abelian varieties, theta functions and the Fourier transform. Cambridge University Press, 2003.
  47. J. Ren and Y. Soibelman. Cohomological Hall Algebras, Semicanonical Bases and Donaldson–Thomas Invariants for 2-dimensional Calabi–Yau Categories (with an Appendix by Ben Davison). In Algebra, Geometry, and Physics in the 21st Century, pages 261–293. Springer, 2017.
  48. C. Simpson. Moduli of representations of the fundamental group of a smooth projective variety I. Publ. Math. IHÉS, 79:867–918, 1994.
  49. S. Schlegel-Mejia. BPS cohomology for rank 2 degree 0 Higgs bundles (and more). https://arxiv.org/abs/2201.09962.
  50. F. Sala and O. Schiffmann. Cohomological Hall algebra of Higgs sheaves on a curve. Algebraic Geom., 7(3):346–376, 2020.
  51. O. Schiffmann and E. Vasserot. Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on 𝔸2superscript𝔸2\mathbb{A}^{2}blackboard_A start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Publ. Math. IHÉS, 118(1):213–342, 2013.
  52. Tasuki T. Kinjo. Dimensional reduction in cohomological Donaldson–Thomas theory. Comp. Math., 158(1):123–167, 2022.
  53. Y. Toda. Gopakumar-Vafa invariants and wall-crossing. https://arxiv.org/abs/1710.01843, 2017.
  54. Y. Yang and G. Zhao. On two cohomological Hall algebras. Proc. Roy. Soc. Edinburgh A, pages 1–27, 2016.
  55. Y. Yang and G. Zhao. The cohomological Hall algebra of a preprojective algebra. Proc. London Math. Soc., 116(5):1029–1074, 2018.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.