Nonabelian Hodge theory for stacks and a stacky P=W conjecture (2112.10830v5)
Abstract: We introduce a version of the P=W conjecture relating the Borel-Moore homology of the stack of representations of the fundamental group of a genus g Riemann surface with the Borel-Moore homology of the stack of degree zero semistable Higgs bundles on a smooth projective complex curve of genus $g$. In order to state the conjecture we propose a construction of a canonical isomorphism between these Borel-Moore homology groups. We relate the stacky P=W conjecture with the original P=W conjecture concerning the cohomology of smooth moduli spaces of twisted objects, and the PI=WI conjecture concerning the intersection cohomology groups of singular moduli spaces of untwisted objects. In genus zero and one, we prove the conjectures that we introduce in this paper.
- A Luna étale slice theorem for algebraic stacks. Ann. Math., 191(3):675–738, 2020.
- V. Baranovsky. The variety of pairs of commuting nilpotent matrices is irreducible. Transform. groups, 6(1):3–8, 2001.
- A “Darboux theorem” for shifted symplectic structures on derived Artin stacks, with applications. Geom. & Top., 19(3):1287–1359, 2015.
- Faisceaux pervers. Astérisque, 100, 1983.
- T. Bridgeland. Equivalences of triangulated categories and Fourier–Mukai transforms. Bull. London Math. Soc., 31(1):25–34, 1999.
- T. Bozec and O. Schiffmann. Counting absolutely cuspidals for quivers. Mathematische Zeitschrift, 292(1-2):133–149, 2019.
- W. Crawley-Boevey. Geometry of the moment map for representations of quivers. Compos. Math., 126(3):257–293, 2001.
- K. Corlette. Flat G𝐺Gitalic_G-bundles with canonical metrics. J. Differ. Geom., 28(3):361–382, 1988.
- B. Davison. Cohomological Hall algebras and character varieties. Int. J. Math., 27(07).
- B. Davison. The critical CoHA of a quiver with potential. Quart. J. Math., 68(2):635–703, 2017.
- B. Davison. The integrality conjecture and the cohomology of preprojective stacks. https://arxiv.org/abs/1602.02110v3, 2017.
- B. Davison. Purity of critical cohomology and Kac’s conjecture. Math. Res. Lett., 25(2):469–488, 2018.
- B. Davison. BPS Lie algebras and the less perverse filtration on the preprojective CoHA. https://arxiv.org/abs/2007.03289, 2020.
- B. Davison. Purity and 2-Calabi–Yau categories. https://arxiv.org/abs/2106.07692, 2021.
- B. Davison. Affine BPS algebras, W algebras, and the cohomological Hall algebra of 𝔸2superscript𝔸2\mathbb{A}^{2}blackboard_A start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. arXiv preprint arXiv:2209.05971, 2022.
- Topology of Hitchin systems and Hodge theory of character varieties: the case A1subscript𝐴1A_{1}italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Ann. Math., 175(3):1329–1407, 2012.
- Mark Andrea A de Cataldo and Davesh Maulik. The perverse filtration for the Hitchin fibration is locally constant. Pure Appl. Math. Q., 16(5):1444–1464, 2020.
- P. Deligne. Théorie de Hodge: II. Publ. Math. IHÉS, 40:5–57, 1971.
- P. Deligne. Théorie de Hodge: III. Publ. Math. IHÉS, 44:5–77, 1974.
- Moduli spaces, indecomposable objects and potentials over a finite field. http://arxiv.org/abs/1612.01733, 2016.
- BPS Lie algebras for totally negative 2-Calabi-Yau categories and nonabelian Hodge theory for stacks. https://arxiv.org/abs/2212.07668, 2022.
- BPS Lie algebras for totally negative 2-Calabi-Yau categories and nonabelian Hodge theory for stacks. arXiv preprint arXiv:2212.07668, 2022.
- B. Davison and S. Meinhardt. Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras. Invent. Math., 221:777–871, 2020.
- S. Donaldson. Twisted harmonic maps and self-duality equations. Proc. London Math. Soc., 55:127–131, 1987.
- C. Felisetti. Intersection cohomology of the moduli space of Higgs bundles on a genus 2 curve. J. Inst. Math. Jussieu, page 1–50, 2021.
- C. Felisetti and M. Mauri. P=W conjectures for character varieties with symplectic resolution. https://arxiv.org/abs/2006.08752.
- T. Hausel. Kac’s conjecture from Nakajima quiver varieties. Invent. Math., 181(1):21–37, 2010.
- N. Hitchin. The self-duality equations on a Riemann surface. Proc. London Math. Soc., 3(1):59–126, 1987.
- Positivity for Kac polynomials and DT-invariants of quivers. Ann. Math., 177:1147–1168, 2013.
- P=W𝑃𝑊P=Witalic_P = italic_W via H2subscript𝐻2H_{2}italic_H start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. https://arxiv.org/abs/2209.05429, 2022.
- T. Hausel and F. Rodriguez-Villegas. Mixed Hodge polynomials of character varieties. Invent. Math., 174:555–624, 2008.
- V. Kac. Root systems, representations of quivers and invariant theory. In Invariant theory, pages 74–108. Springer, 1983.
- B. Keller. Calabi–Yau triangulated categories. in Trends in representation theory of algebras and related topics (editor A. Skowronski), pages 467–489, 2008.
- T. Kinjo and N. Koseki. Cohomological χχ\upchiroman_χ-independence for Higgs bundles and Gopakumar–Vafa invariants. https://arxiv.org/abs/2112.10053, 2021.
- T. Kinjo and N. Masuda. Global critical chart for local Calabi–Yau threefold. https://arxiv.org/abs/2112.10052, 2021.
- M. Kashiwara and P. Schapira. Sheaves on manifolds, volume 292 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1990.
- M. Kontsevich and Y. Soibelman. Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants. Commun. Number Theory Phys., 5, 2011. arXiv:1006.2706.
- M. Kapranov and E. Vasserot. The cohomological Hall algebra of a surface and factorization cohomology. https://arxiv.org/abs/1901.07641, 2019.
- M. Mauri. Intersection cohomology of rank two character varieties of surface groups. https://arxiv.org/abs/2101.04628, 2021.
- A. Minets. Cohomological Hall algebras for Higgs torsion sheaves, moduli of triples and sheaves on surfaces. Sel. Math. New Set., 26:1–67, 2020.
- S. Meinhardt and M. Reineke. Donaldson–Thomas invariants versus intersection cohomology of quiver moduli. J. für die Reine und Angew. Math. (Crelles Journal), 2019(754):143–178, 2019.
- D. Maulik and J. Shen. Cohomological χχ\upchiroman_χ-independence for moduli of one-dimensional sheaves and moduli of Higgs bundles. arXiv preprint arXiv:2012.06627, to appear Geom.& Top., 2020.
- D. Maulik and J. Shen. The P=W𝑃𝑊P=Witalic_P = italic_W conjecture for GLnsubscriptGL𝑛\mathrm{GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. https://arxiv.org/abs/2209.02568, 2022.
- Perverse filtrations and Fourier transforms. arXiv preprint arXiv:2308.13160, 2023.
- D. Maulik and Y. Toda. Gopakumar–Vafa invariants via vanishing cycles. Invent. Math., 213(3):1017–1097, 2018.
- A. Polishchuk. Abelian varieties, theta functions and the Fourier transform. Cambridge University Press, 2003.
- J. Ren and Y. Soibelman. Cohomological Hall Algebras, Semicanonical Bases and Donaldson–Thomas Invariants for 2-dimensional Calabi–Yau Categories (with an Appendix by Ben Davison). In Algebra, Geometry, and Physics in the 21st Century, pages 261–293. Springer, 2017.
- C. Simpson. Moduli of representations of the fundamental group of a smooth projective variety I. Publ. Math. IHÉS, 79:867–918, 1994.
- S. Schlegel-Mejia. BPS cohomology for rank 2 degree 0 Higgs bundles (and more). https://arxiv.org/abs/2201.09962.
- F. Sala and O. Schiffmann. Cohomological Hall algebra of Higgs sheaves on a curve. Algebraic Geom., 7(3):346–376, 2020.
- O. Schiffmann and E. Vasserot. Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on 𝔸2superscript𝔸2\mathbb{A}^{2}blackboard_A start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. Publ. Math. IHÉS, 118(1):213–342, 2013.
- Tasuki T. Kinjo. Dimensional reduction in cohomological Donaldson–Thomas theory. Comp. Math., 158(1):123–167, 2022.
- Y. Toda. Gopakumar-Vafa invariants and wall-crossing. https://arxiv.org/abs/1710.01843, 2017.
- Y. Yang and G. Zhao. On two cohomological Hall algebras. Proc. Roy. Soc. Edinburgh A, pages 1–27, 2016.
- Y. Yang and G. Zhao. The cohomological Hall algebra of a preprojective algebra. Proc. London Math. Soc., 116(5):1029–1074, 2018.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.