Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Scalable randomized benchmarking of quantum computers using mirror circuits (2112.09853v2)

Published 18 Dec 2021 in quant-ph

Abstract: The performance of quantum gates is often assessed using some form of randomized benchmarking. However, the existing methods become infeasible for more than approximately five qubits. Here we show how to use a simple and customizable class of circuits -- randomized mirror circuits -- to perform scalable, robust, and flexible randomized benchmarking of Clifford gates. We show that this technique approximately estimates the infidelity of an average many-qubit logic layer, and we use simulations of up to 225 qubits with physically realistic error rates in the range 0.1-1% to demonstrate its scalability. We then use up to 16 physical qubits of a cloud quantum computing platform to demonstrate that our technique can reveal and quantify crosstalk errors in many-qubit circuits.

Citations (59)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: