On the Eigenstructure of Covariance Matrices with Divergent Spikes
Abstract: For a generalization of Johnstone's spiked model, a covariance matrix with eigenvalues all one but $M$ of them, the number of features $N$ comparable to the number of samples $n: N=N(n), M=M(n), \gamma{-1} \leq \frac{N}{n} \leq \gamma$ where $\gamma \in (0,\infty),$ we obtain consistency rates in the form of CLTs for separated spikes tending to infinity fast enough whenever $M$ grows slightly slower than $n: \lim_{n \to \infty}{\frac{\sqrt{\log{n}}}{\log{\frac{n}{M(n)}}}}=0.$ Our results fill a gap in the existing literature in which the largest range covered for the number of spikes has been $o(n{1/6})$ and reveal a certain degree of flexibility for the centering in these CLTs inasmuch as it can be empirical, deterministic, or a sum of both. Furthermore, we derive consistency rates of their corresponding empirical eigenvectors to their true counterparts, which turn out to depend on the relative growth of these eigenvalues.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.