Papers
Topics
Authors
Recent
2000 character limit reached

On the Eigenstructure of Covariance Matrices with Divergent Spikes

Published 14 Dec 2021 in math.ST, math.PR, and stat.TH | (2112.07591v1)

Abstract: For a generalization of Johnstone's spiked model, a covariance matrix with eigenvalues all one but $M$ of them, the number of features $N$ comparable to the number of samples $n: N=N(n), M=M(n), \gamma{-1} \leq \frac{N}{n} \leq \gamma$ where $\gamma \in (0,\infty),$ we obtain consistency rates in the form of CLTs for separated spikes tending to infinity fast enough whenever $M$ grows slightly slower than $n: \lim_{n \to \infty}{\frac{\sqrt{\log{n}}}{\log{\frac{n}{M(n)}}}}=0.$ Our results fill a gap in the existing literature in which the largest range covered for the number of spikes has been $o(n{1/6})$ and reveal a certain degree of flexibility for the centering in these CLTs inasmuch as it can be empirical, deterministic, or a sum of both. Furthermore, we derive consistency rates of their corresponding empirical eigenvectors to their true counterparts, which turn out to depend on the relative growth of these eigenvalues.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.