Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Cooperative Multi-Agent Reinforcement Learning with Hypergraph Convolution (2112.06771v2)

Published 9 Dec 2021 in cs.AI, cs.LG, and cs.MA

Abstract: Recent years have witnessed the great success of multi-agent systems (MAS). Value decomposition, which decomposes joint action values into individual action values, has been an important work in MAS. However, many value decomposition methods ignore the coordination among different agents, leading to the notorious "lazy agents" problem. To enhance the coordination in MAS, this paper proposes HyperGraph CoNvolution MIX (HGCN-MIX), a method that incorporates hypergraph convolution with value decomposition. HGCN-MIX models agents as well as their relationships as a hypergraph, where agents are nodes and hyperedges among nodes indicate that the corresponding agents can coordinate to achieve larger rewards. Then, it trains a hypergraph that can capture the collaborative relationships among agents. Leveraging the learned hypergraph to consider how other agents' observations and actions affect their decisions, the agents in a MAS can better coordinate. We evaluate HGCN-MIX in the StarCraft II multi-agent challenge benchmark. The experimental results demonstrate that HGCN-MIX can train joint policies that outperform or achieve a similar level of performance as the current state-of-the-art techniques. We also observe that HGCN-MIX has an even more significant improvement of performance in the scenarios with a large amount of agents. Besides, we conduct additional analysis to emphasize that when the hypergraph learns more relationships, HGCN-MIX can train stronger joint policies.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube