Papers
Topics
Authors
Recent
Search
2000 character limit reached

N-Cloth: Predicting 3D Cloth Deformation with Mesh-Based Networks

Published 13 Dec 2021 in cs.GR and cs.LG | (2112.06397v3)

Abstract: We present a novel mesh-based learning approach (N-Cloth) for plausible 3D cloth deformation prediction. Our approach is general and can handle cloth or obstacles represented by triangle meshes with arbitrary topologies. We use graph convolution to transform the cloth and object meshes into a latent space to reduce the non-linearity in the mesh space. Our network can predict the target 3D cloth mesh deformation based on the initial state of the cloth mesh template and the target obstacle mesh. Our approach can handle complex cloth meshes with up to 100K triangles and scenes with various objects corresponding to SMPL humans, non-SMPL humans or rigid bodies. In practice, our approach can be used to generate plausible cloth simulation at 30-45 fps on an NVIDIA GeForce RTX 3090 GPU. We highlight its benefits over prior learning-based methods and physically-based cloth simulators.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.