Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Approximation algorithms for confidence bands for time series (2112.06225v1)

Published 12 Dec 2021 in cs.LG and cs.DS

Abstract: Confidence intervals are a standard technique for analyzing data. When applied to time series, confidence intervals are computed for each time point separately. Alternatively, we can compute confidence bands, where we are required to find the smallest area enveloping $k$ time series, where $k$ is a user parameter. Confidence bands can be then used to detect abnormal time series, not just individual observations within the time series. We will show that despite being an NP-hard problem it is possible to find optimal confidence band for some $k$. We do this by considering a different problem: discovering regularized bands, where we minimize the envelope area minus the number of included time series weighted by a parameter $\alpha$. Unlike normal confidence bands we can solve the problem exactly by using a minimum cut. By varying $\alpha$ we can obtain solutions for various $k$. If we have a constraint $k$ for which we cannot find appropriate $\alpha$, we demonstrate a simple algorithm that yields $O(\sqrt{n})$ approximation guarantee by connecting the problem to a minimum $k$-union problem. This connection also implies that we cannot approximate the problem better than $O(n{1/4})$ under some (mild) assumptions. Finally, we consider a variant where instead of minimizing the area we minimize the maximum width. Here, we demonstrate a simple 2-approximation algorithm and show that we cannot achieve better approximation guarantee.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.