Papers
Topics
Authors
Recent
Search
2000 character limit reached

Transversal GRAND for Network Coded Data

Published 10 Dec 2021 in cs.IT and math.IT | (2112.05854v3)

Abstract: This paper considers a transmitter, which uses random linear coding (RLC) to encode data packets. The generated coded packets are broadcast to one or more receivers. A receiver can recover the data packets if it gathers a sufficient number of coded packets. We assume that the receiver does not abandon its efforts to recover the data packets if RLC decoding has been unsuccessful; instead, it employs syndrome decoding in an effort to repair erroneously received coded packets before it attempts RLC decoding again. A key assumption of most decoding techniques, including syndrome decoding, is that errors are independently and identically distributed within the received coded packets. Motivated by the `guessing random additive noise decoding' (GRAND) framework, we develop transversal GRAND: an algorithm that exploits statistical dependence in the occurrence of errors, complements RLC decoding and achieves a gain over syndrome decoding, in terms of the probability that the receiver will recover the original data packets.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.