Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Mapping the metal-insulator phase diagram by algebraically fast-forwarding dynamics on a cloud quantum computer (2112.05688v2)

Published 10 Dec 2021 in quant-ph and cond-mat.str-el

Abstract: Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model and thus gives an approximate solution of the Hubbard model from the solution of simpler quantum impurity model. Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models by preparing and evolving the ground state under the impurity Hamiltonian on a quantum computer that is assumed to have the scalability and accuracy far beyond the current state-of-the-art quantum hardware. As a proof of principle demonstration targeting the Anderson impurity model we close the DMFT loop with current noisy hardware. With a highly optimized fast-forwarding quantum circuit and a noise resilient spectral analysis we observe a Mott phase transition. Based on a Cartan decomposition, our algorithm gives a fixed depth, fast-forwarding, quantum circuit that can evolve the initial state over arbitrarily long times without time-discretization errors typical of other product decomposition formulas such as Trotter decomposition. By exploiting the structure of the fast-forwarding circuits we reduce the gate count (to 77 CNOTs after optimization), simulate the dynamics, and extract frequencies from the Anderson impurity model on noisy quantum hardware. We then demonstrate the Mott transition by mapping the full metal-insulator phase-diagram. Near the Mott phase transition, our method maintains accuracy where Trotter error would otherwise dominate due to the long-time evolution required to resolve quasiparticle resonance frequency extremely close to zero. This work presents the first computation of the Mott phase transition using noisy digital quantum hardware, made viable by a highly optimized computation in terms of gate depth, simulation error, and runtime on quantum hardware.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube