Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Compressive gate set tomography (2112.05176v3)

Published 9 Dec 2021 in quant-ph

Abstract: Flexible characterization techniques that identify and quantify experimental imperfections under realistic assumptions are crucial for the development of quantum computers. Gate set tomography is a characterization approach that simultaneously and self-consistently extracts a tomographic description of the implementation of an entire set of quantum gates, as well as the initial state and measurement, from experimental data. Obtaining such a detailed picture of the experimental implementation is associated with high requirements on the number of sequences and their design, making gate set tomography a challenging task even for only two qubits. In this work, we show that low-rank approximations of gate sets can be obtained from significantly fewer gate sequences and that it is sufficient to draw them randomly. Such tomographic information is needed for the crucial task of dealing with coherent noise. To this end, we formulate the data processing problem of gate set tomography as a rank-constrained tensor completion problem. We provide an algorithm to solve this problem while respecting the usual positivity and normalization constraints of quantum mechanics by using second-order geometrical optimization methods on the complex Stiefel manifold. Besides the reduction in sequences, we demonstrate numerically that the algorithm does not rely on structured gate sets or an elaborate circuit design to robustly perform gate set tomography. Therefore, it is more flexible than traditional approaches. We also demonstrate how coherent errors in shadow estimation protocols can be mitigated using estimates from gate set tomography.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com