Papers
Topics
Authors
Recent
Search
2000 character limit reached

Selective and tunable excitation of topological non-Hermitian skin modes

Published 9 Dec 2021 in quant-ph, cond-mat.str-el, and physics.optics | (2112.04988v1)

Abstract: Non-Hermitian lattices under semi-infinite boundary conditions sustain an extensive number of exponentially-localized states, dubbed non-Hermitian skin modes. Such states can be predicted from the nontrivial topology of the energy spectrum under periodic boundary conditions via a bulk-edge correspondence. However, the selective excitation of the system in one among the infinitely-many topological skin edge states is challenging both from practical and conceptual viewpoints. In fact, in any realistic system with a finite lattice size most of skin edge states collapse and become metastable states. Here we suggest a route toward the selective and tunable excitation of topological skin edge states which avoids the collapse problem by emulating semi-infinite lattice boundaries via tailored on-site potentials at the edges of a finite lattice. We illustrate such a strategy by considering a non-Hermitian topological interface obtained by connecting two Hatano-Nelson chains with opposite imaginary gauge fields, which is amenable for a full analytical treatment.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.