Papers
Topics
Authors
Recent
Search
2000 character limit reached

Combinatorial Solution of the Eclectic Spin Chain

Published 8 Dec 2021 in hep-th | (2112.04506v1)

Abstract: The one-loop dilatation operator in the holomorphic 3-scalar sector of the dynamical fishnet theory is studied. Due to the non-unitary nature of the underlying field theory this operator, dubbed the eclectic spin chain Hamiltonian, is non-diagonalisable. The corresponding spectrum of Jordan blocks leads to logarithms in the two-point functions, which is characteristic of logarithmic conformal field theories. It was previously conjectured that for certain filling conditions and generic couplings the spectrum of the eclectic model is equivalent to the spectrum of a simpler model, the hypereclectic spin chain. We provide further evidence for this conjecture, and introduce a generating function which fully characterises the Jordan block spectrum of the simplified model. This function is found by purely combinatorial means and is simply related to the q-binomial coefficient.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.