Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix Factor Analysis: From Least Squares to Iterative Projection (2112.04186v3)

Published 8 Dec 2021 in stat.ME

Abstract: In this article, we study large-dimensional matrix factor models and estimate the factor loading matrices and factor score matrix by minimizing square loss function. Interestingly, the resultant estimators coincide with the Projected Estimators (PE) in Yu et al.(2022), which was proposed from the perspective of simultaneous reduction of the dimensionality and the magnitudes of the idiosyncratic error matrix. In other word, we provide a least-square interpretation of the PE for matrix factor model, which parallels to the least-square interpretation of the PCA for the vector factor model. We derive the convergence rates of the theoretical minimizers under sub-Gaussian tails. Considering the robustness to the heavy tails of the idiosyncratic errors, we extend the least squares to minimizing the Huber loss function, which leads to a weighted iterative projection approach to compute and learn the parameters. We also derive the convergence rates of the theoretical minimizers of the Huber loss function under bounded $(2+\epsilon)$th moment of the idiosyncratic errors. We conduct extensive numerical studies to investigate the empirical performance of the proposed Huber estimators relative to the state-of-the-art ones. The Huber estimators perform robustly and much better than existing ones when the data are heavy-tailed, and as a result can be used as a safe replacement in practice. An application to a Fama-French financial portfolio dataset demonstrates the empirical advantage of the Huber estimator.

Summary

We haven't generated a summary for this paper yet.