Papers
Topics
Authors
Recent
2000 character limit reached

Statistical inference for large-dimensional tensor factor model by iterative projections

Published 20 Jun 2022 in stat.ME | (2206.09800v3)

Abstract: Tensor Factor Models (TFM) are appealing dimension reduction tools for high-order large-dimensional tensor time series, and have wide applications in economics, finance and medical imaging. In this paper, we propose a projection estimator for the Tucker-decomposition based TFM, and provide its least-square interpretation which parallels to the least-square interpretation of the Principal Component Analysis (PCA) for the vector factor model. The projection technique simultaneously reduces the dimensionality of the signal component and the magnitudes of the idiosyncratic component tensor, thus leading to an increase of the signal-to-noise ratio. We derive a convergence rate of the projection estimator of the loadings and the common factor tensor which are faster than that of the naive PCA-based estimator. Our results are obtained under mild conditions which allow the idiosyncratic components to be weakly cross- and auto- correlated. We also provide a novel iterative procedure based on the eigenvalue-ratio principle to determine the factor numbers. Extensive numerical studies are conducted to investigate the empirical performance of the proposed projection estimators relative to the state-of-the-art ones.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.