Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Statistical Inference for Large-dimensional Matrix-valued Time Series via Iterative Huber Regression (2306.03317v1)

Published 5 Jun 2023 in stat.ME

Abstract: Matrix factor model is drawing growing attention for simultaneous two-way dimension reduction of well-structured matrix-valued observations. This paper focuses on robust statistical inference for matrix factor model in the ``diverging dimension" regime. We derive the convergence rates of the robust estimators for loadings, factors and common components under finite second moment assumption of the idiosyncratic errors. In addition, the asymptotic distributions of the estimators are also derived under mild conditions. We propose a rank minimization and an eigenvalue-ratio method to estimate the pair of factor numbers consistently. Numerical studies confirm the iterative Huber regression algorithm is a practical and reliable approach for the estimation of matrix factor model, especially under the cases with heavy-tailed idiosyncratic errors . We illustrate the practical usefulness of the proposed methods by two real datasets, one on financial portfolios and one on the macroeconomic indices of China.

Summary

We haven't generated a summary for this paper yet.