Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Emotion-Cause Pair Extraction in Customer Reviews (2112.03984v1)

Published 7 Dec 2021 in cs.CL and cs.AI

Abstract: Emotion-Cause Pair Extraction (ECPE) is a complex yet popular area in Natural Language Processing due to its importance and potential applications in various domains. In this report , we aim to present our work in ECPE in the domain of online reviews. With a manually annotated dataset, we explore an algorithm to extract emotion cause pairs using a neural network. In addition, we propose a model using previous reference materials and combining emotion-cause pair extraction with research in the domain of emotion-aware word embeddings, where we send these embeddings into a Bi-LSTM layer which gives us the emotionally relevant clauses. With the constraint of a limited dataset, we achieved . The overall scope of our report comprises of a comprehensive literature review, implementation of referenced methods for dataset construction and initial model training, and modifying previous work in ECPE by proposing an improvement to the pipeline, as well as algorithm development and implementation for the specific domain of reviews.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.