Papers
Topics
Authors
Recent
Search
2000 character limit reached

Associative Memories Using Complex-Valued Hopfield Networks Based on Spin-Torque Oscillator Arrays

Published 6 Dec 2021 in cs.ET, cond-mat.dis-nn, cond-mat.mtrl-sci, cs.LG, and physics.app-ph | (2112.03358v2)

Abstract: Simulations of complex-valued Hopfield networks based on spin-torque oscillators can recover phase-encoded images. Sequences of memristor-augmented inverters provide tunable delay elements that implement complex weights by phase shifting the oscillatory output of the oscillators. Pseudo-inverse training suffices to store at least 12 images in a set of 192 oscillators, representing 16$\times$12 pixel images. The energy required to recover an image depends on the desired error level. For the oscillators and circuitry considered here, 5 % root mean square deviations from the ideal image require approximately 5 $\mu$s and consume roughly 130 nJ. Simulations show that the network functions well when the resonant frequency of the oscillators can be tuned to have a fractional spread less than $10{-3}$, depending on the strength of the feedback.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.