Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Feature Disentanglement of Robot Trajectories (2112.03164v1)

Published 6 Dec 2021 in cs.RO and cs.LG

Abstract: Modeling trajectories generated by robot joints is complex and required for high level activities like trajectory generation, clustering, and classification. Disentagled representation learning promises advances in unsupervised learning, but they have not been evaluated in robot-generated trajectories. In this paper we evaluate three disentangling VAEs ($\beta$-VAE, Decorr VAE, and a new $\beta$-Decorr VAE) on a dataset of 1M robot trajectories generated from a 3 DoF robot arm. We find that the decorrelation-based formulations perform the best in terms of disentangling metrics, trajectory quality, and correlation with ground truth latent features. We expect that these results increase the use of unsupervised learning in robot control.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.