Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Isometric structure of transportation cost spaces on finite metric spaces (2112.02689v1)

Published 5 Dec 2021 in math.FA, math.CO, and math.MG

Abstract: The paper is devoted to isometric Banach-space-theoretical structure of transportation cost (TC) spaces on finite metric spaces. The TC spaces are also known as Arens-Eells, Lipschitz-free, or Wasserstein spaces. A new notion of a roadmap pertinent to a transportation problem on a finite metric space has been introduced and used to simplify proofs for the results on representation of TC spaces as quotients of $\ell_1$ spaces on the edge set over the cycle space. A Tolstoi-type theorem for roadmaps is proved, and directed subgraphs of the canonical graphs, which are supports of maximal optimal roadmaps, are characterized. Possible obstacles for a TC space on a finite metric space $X$ preventing them from containing subspaces isometric to $\ell_\inftyn$ have been found in terms of the canonical graph of $X$. The fact that TC spaces on diamond graphs do not contain $\ell_\infty4$ isometrically has been derived. In addition, a short overview of known results on the isometric structure of TC spaces on finite metric spaces is presented.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.