Sharp Weak Type Estimates for a Family of Zygmund Bases (2112.02038v1)
Abstract: Let $\mathcal{B}$ be a collection of rectangular parallelepipeds in $\mathbb{R}3$ whose sides are parallel to the coordinate axes and such that $\mathcal{B}$ consists of parallelepipeds with side lengths of the form $s, 2j s, t $, where $s, t > 0$ and $j$ lies in a nonempty subset $S$ of the integers. In this paper, we prove the following: If $S$ is a finite set, then the associated geometric maximal operator $M_\mathcal{B}$ satisfies the weak type estimate of the form $$\left|\left{x \in \mathbb{R}3 : M_{\mathcal{B}}f(x) > \alpha\right}\right| \leq C \int_{\mathbb{R}3} \frac{|f|}{\alpha}\left(1 + \log+ \frac{|f|}{\alpha}\right)\;$$ but does not satisfy an estimate of the form $$\left|\left{x \in \mathbb{R}3 : M_{\mathcal{B}}f(x) > \alpha\right}\right| \leq C \int_{\mathbb{R}3} \phi\left(\frac{|f|}{\alpha}\right)$$ for any convex increasing function $\phi: \mathbb[0, \infty) \rightarrow [0, \infty)$ satisfying the condition $$\lim_{x \rightarrow \infty}\frac{\phi(x)}{x (\log(1 + x))} = 0\;.$$ On the other hand, if $S$ is an infinite set, then the associated geometric maximal operator $M_\mathcal{B}$ satisfies the weak type estimate $$\left|\left{x \in \mathbb{R}3 : M_{\mathcal{B}}f(x) > \alpha\right}\right| \leq C \int_{\mathbb{R}3} \frac{|f|}{\alpha} \left(1 + \log+ \frac{|f|}{\alpha}\right){2}$$ but does not satisfy an estimate of the form $$\left|\left{x \in \mathbb{R}3 : M_{\mathcal{B}}f(x) > \alpha\right}\right| \leq C \int_{\mathbb{R}3} \phi\left(\frac{|f|}{\alpha}\right)$$ for any convex increasing function $\phi: \mathbb[0, \infty) \rightarrow [0, \infty)$ satisfying the condition $$\lim_{x \rightarrow \infty}\frac{\phi(x)}{x (\log(1 + x))2} = 0\;.$$
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.