Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Artificial Intelligence-driven Image Analysis of Bacterial Cells and Biofilms (2112.01577v1)

Published 2 Dec 2021 in q-bio.QM

Abstract: The current study explores an artificial intelligence framework for measuring the structural features from microscopy images of the bacterial biofilms. Desulfovibrio alaskensis G20 (DA-G20) grown on mild steel surfaces is used as a model for sulfate reducing bacteria that are implicated in microbiologically influenced corrosion problems. Our goal is to automate the process of extracting the geometrical properties of the DA-G20 cells from the scanning electron microscopy (SEM) images, which is otherwise a laborious and costly process. These geometric properties are a biofilm phenotype that allow us to understand how the biofilm structurally adapts to the surface properties of the underlying metals, which can lead to better corrosion prevention solutions. We adapt two deep learning models: (a) a deep convolutional neural network (DCNN) model to achieve semantic segmentation of the cells, (d) a mask region-convolutional neural network (Mask R-CNN) model to achieve instance segmentation of the cells. These models are then integrated with moment invariants approach to measure the geometric characteristics of the segmented cells. Our numerical studies confirm that the Mask-RCNN and DCNN methods are 227x and 70x faster respectively, compared to the traditional method of manual identification and measurement of the cell geometric properties by the domain experts.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube