Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Finite-Size Scaling at fixed Renormalization-Group invariant (2112.00392v3)

Published 1 Dec 2021 in cond-mat.stat-mech and hep-lat

Abstract: Finite-size scaling at fixed renormalization-group invariant is a powerful and flexible technique to analyze Monte Carlo data at a critical point. It consists in fixing a given renormalization-group invariant quantity to a given value, thereby trading its statistical fluctuations with those of a parameter driving the transition. One remarkable feature is the observed significant improvement of statistical accuracy of various quantities, as compared to a standard analysis. We review the method, discussing in detail its implementation, the error analysis, and a previously introduced covariance-based optimization. Comprehensive benchmarks on the Ising model in two and three dimensions show large gains in the statistical accuracy, which are due to cross-correlations between observables. As an application, we compute an accurate estimate of the inverse critical temperature of the improved O(2) $\phi4$ model on a three-dimensional cubic lattice.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.