Papers
Topics
Authors
Recent
2000 character limit reached

Non-perturbative analytical diagonalization of Hamiltonians with application to coupling suppression and enhancement in cQED (2112.00039v2)

Published 30 Nov 2021 in quant-ph

Abstract: Deriving effective Hamiltonian models plays an essential role in quantum theory, with particular emphasis in recent years on control and engineering problems. In this work, we present two symbolic methods for computing effective Hamiltonian models: the Non-perturbative Analytical Diagonalization (NPAD) and the Recursive Schrieffer-Wolff Transformation (RSWT). NPAD makes use of the Jacobi iteration and works without the assumptions of perturbation theory while retaining convergence, allowing to treat a very wide range of models. In the perturbation regime, it reduces to RSWT, which takes advantage of an in-built recursive structure where remarkably the number of terms increases only linearly with perturbation order, exponentially decreasing the number of terms compared to the ubiquitous Schrieffer-Wolff method. In this regime, NPAD further gives an exponential reduction in terms, i.e. superexponential compared to Schrieffer-Wolff, relevant to high precision expansions. Both methods consist of algebraic expressions and can be easily automated for symbolic computation. To demonstrate the application of the methods, we study the ZZ and cross-resonance interactions of superconducting qubits systems. We investigate both suppressing and engineering the coupling in near-resonant and quasi-dispersive regimes. With the proposed methods, the coupling strength in the effective Hamiltonians can be estimated with high precision comparable to numerical results.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.