Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Probabilistic segmentation of overlapping galaxies for large cosmological surveys (2111.15455v2)

Published 30 Nov 2021 in astro-ph.IM, astro-ph.GA, and physics.data-an

Abstract: Encoder-Decoder networks such as U-Nets have been applied successfully in a wide range of computer vision tasks, especially for image segmentation of different flavours across different fields. Nevertheless, most applications lack of a satisfying quantification of the uncertainty of the prediction. Yet, a well calibrated segmentation uncertainty can be a key element for scientific applications such as precision cosmology. In this on-going work, we explore the use of the probabilistic version of the U-Net, recently proposed by Kohl et al (2018), and adapt it to automate the segmentation of galaxies for large photometric surveys. We focus especially on the probabilistic segmentation of overlapping galaxies, also known as blending. We show that, even when training with a single ground truth per input sample, the model manages to properly capture a pixel-wise uncertainty on the segmentation map. Such uncertainty can then be propagated further down the analysis of the galaxy properties. To our knowledge, this is the first time such an experiment is applied for galaxy deblending in astrophysics.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.