Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Probabilistic Estimation of 3D Human Shape and Pose with a Semantic Local Parametric Model (2111.15404v1)

Published 30 Nov 2021 in cs.CV

Abstract: This paper addresses the problem of 3D human body shape and pose estimation from RGB images. Some recent approaches to this task predict probability distributions over human body model parameters conditioned on the input images. This is motivated by the ill-posed nature of the problem wherein multiple 3D reconstructions may match the image evidence, particularly when some parts of the body are locally occluded. However, body shape parameters in widely-used body models (e.g. SMPL) control global deformations over the whole body surface. Distributions over these global shape parameters are unable to meaningfully capture uncertainty in shape estimates associated with locally-occluded body parts. In contrast, we present a method that (i) predicts distributions over local body shape in the form of semantic body measurements and (ii) uses a linear mapping to transform a local distribution over body measurements to a global distribution over SMPL shape parameters. We show that our method outperforms the current state-of-the-art in terms of identity-dependent body shape estimation accuracy on the SSP-3D dataset, and a private dataset of tape-measured humans, by probabilistically-combining local body measurement distributions predicted from multiple images of a subject.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.