Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

(Thesis) Reservoir Computing With Dynamical Systems (2111.14226v2)

Published 28 Nov 2021 in math.DS

Abstract: A reservoir computer is a special type of neural network, where most of the weights are randomly fixed and only a subset are trained. In this thesis we prove results about reservoir computers trained on deterministic dynamical systems, and stochastic processes. We focus mostly on a special type of reservoir computer called an Echo State Network (ESN). In the deterministic case, we prove (under some assumptions) that if a reservoir computer has the Echo State Property (ESP), then there is a C1 generalised synchronisation between the input dynamical system and the dynamics in the reservoir space. Furthermore, we prove that a reservoir computer with the local ESP in several disjoint subsets of the reservoir space will admit several distinct generalised synchronisations. In the special case that the reservoir map is linear, and has the ESP, we prove that the generalised synchronisation is generically an embedding. This result admits Takens' embedding Theorem as a special case. We go to show that ESNs trained on scalar observations of an ergodic dynamical system can approximate an arbitrary target function, including the next step map used in time series forecasting. This universal approximation property holds despite the training process being entirely linear. We prove analogous results for ESNs trained on observations of a stochastic process, which are not be Markovian in general. We use these results to develop supervised learning, and reinforcement learning algorithms supported by an ESN. In the penultimate chapter of this thesis, we use a reservoir computer to numerically solve linear PDEs. In the final chapter, we conclude and discuss directions for future work.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.