Papers
Topics
Authors
Recent
2000 character limit reached

Local Central Limit Theorem for Long-Range Two-Body Potentials at Sufficiently High Temperatures (2111.14099v2)

Published 28 Nov 2021 in math-ph, cond-mat.stat-mech, math.MP, and math.PR

Abstract: Dobrushin and Tirozzi [14] showed that, for a Gibbs measure with the finite-range potential, the Local Central Limit Theorem is implied by the Integral Central Limit Theorem. Campanino, Capocaccia, and Tirozzi [7] extended this result for a family of Gibbs measures for long-range pair potentials satisfying certain conditions. We are able to show for a family of Gibbs measures for long-range pair potentials not satisfying the conditions given in [7], that at sufficiently high temperatures, if the Integral Central Limit Theorem holds for a given sequence of Gibbs measures, then the Local Central Limit Theorem also holds for the same sequence. We also extend [7] when the state space is general, provided that it is equipped with a finite measure.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.