2000 character limit reached
An adaptive regularization algorithm for unconstrained optimization with inexact function and derivatives values (2111.14098v1)
Published 28 Nov 2021 in math.OC
Abstract: An adaptive regularization algorithm for unconstrained nonconvex optimization is proposed that is capable of handling inexact objective-function and derivative values, and also of providing approximate minimizer of arbitrary order. In comparison with a similar algorithm proposed in Cartis, Gould, Toint (2021), its distinguishing feature is that it is based on controlling the relative error between the model and objective values. A sharp evaluation complexity complexity bound is derived for the new algorithm.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.