Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 45 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Intelligent edge-based recommender system for internet of energy applications (2111.13272v1)

Published 25 Nov 2021 in cs.CY

Abstract: Preserving energy in households and office buildings is a significant challenge, mainly due to the recent shortage of energy resources, the uprising of the current environmental problems, and the global lack of utilizing energy-saving technologies. Not to mention, within some regions, COVID-19 social distancing measures have led to a temporary transfer of energy demand from commercial and urban centers to residential areas, causing an increased use and higher charges, and in turn, creating economic impacts on customers. Therefore, the marketplace could benefit from developing an internet of things (IoT) ecosystem that monitors energy consumption habits and promptly recommends action to facilitate energy efficiency. This paper aims to present the full integration of a proposed energy efficiency framework into the Home-Assistant platform using an edge-based architecture. End-users can visualize their consumption patterns as well as ambient environmental data using the Home-Assistant user interface. More notably, explainable energy-saving recommendations are delivered to end-users in the form of notifications via the mobile application to facilitate habit change. In this context, to the best of the authors' knowledge, this is the first attempt to develop and implement an energy-saving recommender system on edge devices. Thus, ensuring better privacy preservation since data are processed locally on the edge, without the need to transmit them to remote servers, as is the case with cloudlet platforms.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.